skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhattacharya, Sulagna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sunlike stars can transmute into comparable mass black holes by steadily accumulating heavy nonannihilating dark matter particles over the course of their lives. If such stars form in binary systems, they could give rise to quasi-monochromatic, persistent gravitational waves, commonly known as continuous gravitational waves, as they inspiral toward one another. We demonstrate that next-generation space-based detectors, e.g., Laser Interferometer Space Antenna (LISA) and Big Bang Observer (BBO), can provide novel constraints on dark matter parameters (dark matter mass and its interaction cross-section with the nucleons) by probing gravitational waves from transmuted sunlike stars that are in close binaries. Our projected constraints depend on several astrophysical uncertainties and nevertheless are competitive with the existing constraints obtained from cosmological measurements as well as terrestrial direct searches, demonstrating a notable science case for these space-based gravitational wave detectors as probes of particle dark matter. Published by the American Physical Society2024 
    more » « less
  2. NA (Ed.)